Technische

Universitat
Munchen

1% 4%

Tsinghua University

Google

1Chenyangguang (Cyrus) Zhang* !Guanlong Jiao* 2Yan Di 1Gu Wang Zigin Huang
'Ruida Zhang 3Fabian Manhardt ‘Bowen Fu 23Federico Tombari tXiangyang Ji
1Tsinghua University “Technical University of Munich 3Google

MOHO: Learning Single-view Hand-held Object Reconstruction with Multi-view Occlusion-Aware Supervision

[Hand-held Object Reconstruction]

* Given a single RGB image, DDF-HO predicts a 3D model for the
object grasped by the hand. It is an essential technique with many
practical applications, e.g. robotics, augmented and virtual reality,
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Synthetic-to-real Framework
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« [Current Setting] Current single-view hand-held object R Probabilistic.
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reconstruction methods typically need 3D ground-truth models for R Col.\'/ae'::ge | Weighted
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 [Our method] We present MOHO, to exploit Multi-view Occlusion-
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reconstruction from a single image, tackling two predominant fcchision-awaiareatios p; iy . W :
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Semantic cues by DINO and hand-articulated geometric embeddings: for more stable
knowledge transferring in the whole synthetic-to-real pipeline.
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SOMVideo Dataset

SOMVideo is synthesized with 141,550 scenes with the same 2,772
objects as the ObMan dataset. Each corresponding occlusion-free
supervising views are captured from 10 view angles.
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SSDNeRF
Method F-57 F-10 1 CD |
HO [23] 0.11 0.22 4.19
GF [28] 0.12 0.24 4.96
IHOI [63] 0.28 0.50 1.53
PixelNeRF [65] 0.17 0.32 6.91
SSDNeRF [9] 0.25 0.40 2.60
Ours 0.31 0.50 0.91

Table 1. Geometric results on HO3D [22] compared with 3D super-
vised methods (top) and 2D supervised methods (bottom).
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Synthetic novel views

Method F-51 F-10 1 CD |
HO [23] 0.38 0.64 0.42
GF [28] 0.39 0.66 0.45
AlignSDF [12] 041 0.68 0.39
gSDF [13] 0.44 0.71 0.34
PixelNeRF [65] 0.25 0.46 0.94
SSDNeRF [9] 0.27 0.49 0.58
Ours w/o SYN 0.52 0.74 0.18
Ours 0.60 0.81 0.15

Table 2. Geometric results on DexYCB [8] compared with 3D
supervised methods (top) and 2D supervised methods (bottom).
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